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1. INTRODUCTION 
 

Although there are several parameters of interest in the quantitative aspects of vegetative remote sensing, 
leaf area index (LAI) has been one of the most useful and important parameters to characterize the vegetation 
activities from local to global scales.  LAI, defined as the sum of the leaf area per unit ground area, can be used to 
measure the activities (photosynthesis, transpiration, and evapotranspiration) and the production of plant ecosystems 
(Pierce and Running, 1988; Bonan, 1993).  The measurement of LAI on the ground is very difficult and requires a 
great amount of labor and cost (Gower et al., 1999).  Since the plant canopy is composed of leaves, which is a direct 
source of the energy-matter interactions in most earth-observing remote sensing systems, LAI has been an attractive 
variable of interest in vegetative remote sensing. 

 
There have been many attempts to estimate LAI using various types of remote sensor data since the early 

stage of space remote sensing (Badhwar et al., 1986; Peterson et al., 1987; Turner et al., 1999).  Remote sensing 
estimation of LAI has been primarily based on the empirical relationship between the ground measured leaf area 
index and sensor observed spectral responses (Curran et al., 1992; Peddle et al., 1999).  Beside such empirical 
approaches, there have been a few studies to estimate LAI by the inversion of canopy reflectance models (Smith, 
1993; Jacquemoud et al., 1995; Kuusk, 1998).  However, these studies were mostly based on broadband multi-
spectral data, such as Landsat TM and SPOT images.  Recent development of imaging spectrometry technology has 
brought a new form of remote sensor data, which has shown great potential for many applications.  In particular, the 
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, which have been provided since the late 1980s, 
were used to study specific features of vegetation targets.  The 224 continuous spectral band data demonstrated the 
capability to depict certain characteristics of vegetation canopy, such as biochemical constituent (Wessman et al., 
1988; Johnson et al., 1994).  There have been a few studies using hyperspectral data in relation to leaf area index.  In 
recent years, hyperspectral data has been used to estimate LAI by the inversion of radiative transfer models, which 
simulate the mechanics of canopy reflectance (Asner et al., 2000). 
 

The objective of this study is to evaluate the capability of narrowband hyperspectral data for estimating leaf 
area index by comparing them with those of broadband multispectral instruments.  Although there were many 
studies dealing with the remote sensing estimation of LAI by various types of image data, it has been rare to find the 
advantage of using the narrowband hyperspectral data over the broadband multispectral data.  The lack of 
comparative studies might be explained by the shortage of both hyperspectral and broadband data sets available at 
the same location.  Even though it was a simulated form of hyperspectral data, the hyperspectral-based vegetation 
indices did not provide better results than broadband data for estimating LAI (Jacquemoud et al., 1995; Broge and 
Leblanc, 2000).  Lefsky et al. (2001) have compared several data types, including Landsat TM, high spatial data, 
AVIRIS, and scanning lidar data, for estimating forest stand structures and found that AVIRIS data were not better 
than other data types for relating stem diameter, biomass, and basal area.  Some studies have compared vegetation 
indices derived from both narrowband and broadband data to relate them for discriminating different vegetation 
groups or cover types (Teillet et al., 1997; Galvao et al., 2000).  Hyperspectral data may or may not be better than 
broadband data to estimate LAI.  The empirical approach is often very useful for analyzing and comparing different 
types of remote sensing data by relating them to the ground-measured biophysical variables.  This study attempts to 
compare AVIRIS and Landsat ETM+ data by relating them to LAI over the two study sites of tall-grass prairie and 
mixed forest, which have well-established ground measurement plots.   
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2. DATA AND METHODS 
 
2.1 Study Sites and Data 
 

This study was conducted in collaboration with the BigFoot project, which was designed to provide local 
validation of global estimates of biophysical variables and processes using MODIS data (Cohen and Justice, 1999).  
Study areas include two sites of mixed forest and grass prairie.  These areas are also the sites of the long-term 
ecological research plots and a rich source of ground information.  The Harvard Forest (HARV) site has a 5 x 5 km2 
area located about 50 km northwest of Worcester, Massachusetts.  The forest has mixed species of eastern hemlock, 
red pine, and eastern hardwood.  The Konza Prairie (KONZ) site is located approximately 10 km southwest of 
Manhattan, Kansas, and mostly covered by grass and shrub. 

 
At each site there were one hundred, 25 x 25 m2 plots where land cover, LAI, absorbed radiation, and net 

primary production were measured/observed.  Each plot has four to nine subplots.  Subplot measurements were 
averaged to provide a single value for each measured variable at each plot. Plot locations were determined using a 
real-time differential GPS. The accuracy of the system was <0.3 m in both the x and y dimensions.  At the HARV 
site, LAI was measured at two time periods (June and August) during the growing season in 2000.  Due to 
unexpected problems during the field measurements, only 73 of the 100 plots were measured.  At the KONZ site, 
LAI measurements were made in all the 100 plots in June 2000. 

 
Considering the phenological variation of vegetation target, both AVIRIS and Landsat ETM+ data were 

obtained as close to the ground data collection as possible (Table 1).  For the KONZ study site, the data acquisition 
date was close in time to the ground measurements.  The HARV study site, however, shows some discrepancy 
between image acquisition and ground measurement.  We used two sets of LAI measurements separately for 
analyzing AVIRIS and ETM+ data.  AVIRIS data were analyzed with the field LAI data of June while ETM+ data 
were analyzed with the LAI measurement of June.  
 
 

Table 1. Date of data acquisition for AVIRIS and TM image data and ground measurements of LAI. 
 

Study site AVIRIS Landsat ETM+ Field LAI measurement 

May 16, 2000  June 18, 2000 Harvard Forest (HARV), Massachusetts 
 August 31, 1999 August 4, 2000 

Konza Prairie (KONZ), Kansas June 22, 2000 June 7, 2000 June 6, 2000 

 
 
2.2 Preprocessing of Image Data 
 

Both AVIRIS and ETM+ images were georeferenced, radiometrically calibrated, and converted to surface 
reflectance value.  Initially, Landsat ETM+ data were georeferenced to UTM coordinates by using USGS digital 
orthophoto quadrangles.  The AVIRIS data were then georectified into the ETM+ image by image-to-image 
registration.  The average positional accuracy of the geometric correction was less than 0.5 pixels. 

 
In quantitative analysis of remote sensing images, atmospheric correction is a critical step to convert the 

digital number (DN) value to a more absolute magnitude of surface reflectance.  Due to the carefully designed 
experimental sensor system, AVIRIS data have relatively well-developed atmospheric correction algorithms.  
Atmospheric water-vapor absorption is the most influential factor in the atmospheric correction of remote sensing 
data.  The atmospheric correction of hyperspectral data has a clear advantage over multispectral data since the 
magnitude of water-vapor effects can be directly assessed from certain spectral channels of their own data sets.  
AVIRIS data used in this study were atmospherically corrected by using the ATREM program (Gao et al., 1993), 
which is based on a radiative transfer model.  ATREM uses two water absorption spectra (around 940 nm and 
1140 nm) channels in the AVIRIS channels to estimate the amount of water vapor at the time of data acquisition. 

 



Although there have been several studies dealing with the atmospheric correction of Landsat TM and 
ETM+ data, all of them have certain limitations to calculate the absolute magnitude of waver vapor absorption.  For 
our study, we used the COST radiometric correction model of Chavez (1996), which is an empirical model based 
upon ‘dark’ objects.  Radiometrically ‘dark’ objects were assumed to have 2 % reflectance across all bands.  
Excluding the thermal infrared band, the six reflective bands of ETM+ data were converted to surface reflectance.  
 
2.3 AVIRIS Data Manipulation 
 
 From the aspect of the number of spectral bands and the range of spectrum involved, the relative amount of 
information content of AVIRIS may be far more than that of Landsat ETM+.  Therefore, any absolute comparisons 
between these two data types may not be reasonable.  Also, the comparison between ETM+ and AVIRIS can be 
subjective, depending on the method applied.  In this study, we generated four sets of AVIRIS data to be compared 
with the six reflective bands of Landsat ETM+.  These AVIRIS data sets were mostly out of 89 channels covering 
the wavelength range of six ETM+ bands, with the exception of the data set obtained by principal component 
analysis, which used all AVIRIS channels excluding the water-absorption and high-noise channels.  Table 2 shows 
the list of AVIRIS data sets generated for the comparison with ETM+ data.   
 
 

Table 2. Sets of AVIRIS data to be compared with Landsat ETM+ data. 
 

AVIRIS data set Number of AVIRIS 
channels used 

Method 

Simulated ETM+ (sim_TM) 
89 channels covering 
the spectrum of six 
ETM+ bands 

• Weighted average of TM corresponding channels 
• Weighting factors were determined to represent 

spectral responsivities of each ETM+ band 

Center wavelength of TM (cen_TM) 

6 channels matching 
with the center 
wavelength of each 
ETM+ band 

• ch 12 (481nm) for ETM+ band 1 
• ch 21 (568nm) for ETM+ band 2 
• ch 31 (665nm) for ETM+ band 3 
• ch 52 (837nm) for ETM+ band 4 
• ch 137 (1653nm) for ETM+ band 5 
• ch 195 (2220nm) for ETM+ band 7 

Selected combination (sel_AVIRIS) 
7 channels (HARV) 
14 channels (KONZ) 

Selection by multiple stepwise regression using 89 
channels covering ETM+ spectrum 

Principal component (pc_AVIRIS) 187 channels 
Principal component transformation of all 187 
channels (excluding water-absorption and noise 
channels from original 224 channels) 

 
 
2.4 Multiple Regression and Canonical Correlations Analysis 
 
 At first, we extracted surface reflectance values from the all sets of AVIRIS and Landsat ETM+ data for the 
location of every ground plot for each study site.  Field-measured LAI was then related to spectral reflectance values 
extracted from the image data by using the multiple regression method.  The coefficient of determination (R2) of 
each regression equation is used as a simple measure of predicting LAI by the image data.  The 89 AVIRIS channels 
would have too many independent variables for relating LAI by the multiple regression method.  We used the 
stepwise selection method to select the best sets of AVIRIS channels.  
 
 Another way of looking at the closeness between LAI and image-extracted spectral reflectance was 
canonical correlation analysis (CCA).  Canonical correlation analysis is a multivariate statistical method to look at 
the relationships between two sets of variables (multiple Xs and multiple Ys) (Tabachnick and Fidell, 1989). CCA 
maximizes the correlation between a composite of variables from one set with a composite of variables from another 
set. When there is only one X (such as the LAI in this study), CCA provides a set of coefficients to transform the Ys 
(selected image bands) such that they have the maximum correlation with X.  The canonical correlation coefficients 
were used as a single measure of relationship between LAI and a set of multiple image bands selected for each data 



set.  Since CCA is a generalized form of multiple regression, canonical correlation coefficient (r) is basically the 
same as the square root of the coefficient of determination (R2) of the multiple regression model. 
 
 
3. RESULTS 
 

As an initial effort to examine the relationship between the field-measured LAI and AVIRIS spectral 
reflectance, correlation coefficients were calculated.  As can be observed in Figure 1, two study sites show a rather 
different pattern of correlation along the wavelength.  In the HARV study site, where the variation of LAI and 
species composition is relatively large, relatively high correlations were found in visible and middle infrared spectra.  
The statistical significance level is proportional to the absolute value of correlation coefficients (r), and the 
confidence limit is less than 95% when |r| is below 0.15.  It turned out that the near infrared spectrum (730–
1300 nm) showed no significant correlation with LAI.  The weak correlations in the near infrared spectrum might be 
explained by the saturated spectral reflectance at the high LAI (around 5 on average) of the HARV study site.  The 
strongest correlations were found at the red-edge position (around 720 nm) and the middle infrared spectrum (2070
2400 nm).  In the KONZ study site, where the range of LAI is rather narrow and cover type is relatively 
homogeneous grass prairie, relatively high correlation coefficients with the field-measured LAI were found at the 
near infrared spectrum (730 1300 nm).  The field-measured LAI in this study area were relatively small (less than 2 
on average), and they were relatively sensitive in the near infrared spectrum.  Unlike the HARV study site, no 
significant correlations were found at the visible spectrum.  In the middle infrared spectrum, significant correlations 
were only found in the wavelengths longer than 2100 nm.  Such high correlations in the middle infrared spectrum 
have not been well explained and probably need further analysis.  Again, the strongest correlation with the field-
measured LAI was found at the red-edge position around 730 nm, which has been reported by several previous 
studies (Danson, 1996).   

 
For the comparison, the similar correlation coefficients were also obtained by using the ETM+ reflectance 

for each study site (Figure 2).  Unlike with the AVIRIS reflectance, no significant correlations were found at the 
visible and near infrared spectra.  The only statistically significant correlations were found in the second middle 
infrared band (ETM+ band 7), which has a spectrum range between 2090 and 2350 nm. 

 
Comparing the two correlation plots in Figures 1 and 2, we might anticipate the outcome of the multiple 

regression models using AVIRIS and ETM+ data.  Due to the relatively weak correlations along the entire range of 
wavelength spectra in both AVIRIS and ETM+, the coefficients of determination (R2) of the regression models were 
relative low.  Overall, most AVIRIS data sets did not show any striking improvements of R2 values over the ETM+ 
data although certain combinations of AVIRIS channels showed some improvement to explain the LAI (Table 3).  
The simulated ETM+ data or the six AVIRIS channels matching the center wavelength of ETM+ bands was not 
much different from the ETM+ data in predicting the LAI for both sites.  From the viewpoint of the sensor dynamic 
range, pixel gray level, and atmospheric correction procedure, AVIRIS can be said to have better radiometric 
resolution than ETM+ data.  The simulated ETM+ data have exactly the same spectral range as the ETM+ and 
probably have improved radiometric quality than ETM+.  However, the high radiometric resolution of AVIRIS does 
not help to explain the LAI as compared to the ETM+. 

 
 

Table 3. Coefficients of determination (R2) of multiple regression models to relate the field measured LAI. 
 

Data set used Harvard Forest Konza Prairie 

ETM+ 6 bands 
AVIRIS (simulated ETM+) 
AVIRIS (6 channels of ETM+ center wavelength) 
AVIRIS (best subset channels) 
AVIRIS (first 15 principal components) 

0.1729 
0.3348 
0.3336 
0.5138 
0.4376 

0.2815 
0.1986 
0.2557 
0.5571 
0.3486 

 
 
 



 

(a)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

374 568 732 924 1117 1294 1494 1693 1880 2081 2281 2479

channel wavelength (nm)

co
rr

el
at

io
n

 c
o

ef
fi

ci
en

t 
(r

)

 

(b)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

374 568 732 924 1117 1294 1494 1693 1880 2081 2281 2479

channel wavelength (nm)

co
rr

el
at

io
n

 c
o

ef
fi

ci
en

t 
(r

)

 
 
Figure 1. Correlation coefficients between the field-measured leaf area index (LAI) and reflectance along the 

AVIRIS spectral channels for Harvard Forest (a) and Konza Prairie (b).  Statistical significance level is 
proportional to the absolute value of r (less than 95% confidence limits when |r| < 0.15). 
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Figure 2. Correlation coefficients between the field-measured leaf area index (LAI) and reflectance along the ETM 

six bands for the Harvard Forest (left) and Konza Prairie (right).  Statistically significant correlations were 
not found in visible and near infrared spectra. 



 
Principal component analysis (PCA) has been frequently used in dealing with multi-dimensional remote 

sensing data.  In particular, with the capacity of assembling total variation of whole data into a reduced number of 
bands, the principal component transformation is often used in analyzing hyperspectral data.  In our study, we 
applied PCA to the 187 AVIRIS channels after excluding those water-absorption and high-noise channels from the 
original 224 channels.  The first 15 principal components include 99.9% of total variations of the 187 channels 
AVIRIS data used.  Even though the 15 bands of PCA transformed data have the most information content, they 
were not very helpful for explaining the LAI.  The R2 value of the regression model using PCA transformed data 
shows only a slight improvement. 

 
In both study sites, the best-fit regression model was achieved when we used only a few selected channels 

of AVIRIS data.  The coefficients of determination (R2) were higher than the ETM and other subsets of AVIRIS 
data.  The best channel selection was performed by the stepwise multiple regression method.  Table 4 shows the 
final results of the stepwise multiple regression to select the best AVIRIS channels to explain LAI.  Although we 
could protect against including any channels that do not contribute to the predictive power of the regression model 
by specifying small significance level (i.e., 5 percent), we tried to include more channels that could contribute to 
predicting LAI by increasing the significance level up to 15 percent (SAS, 1988).  Only 7 AVIRIS channels were 
selected in the HARV study site while 14 channels were selected for the KONZ study site.  These selected AVIRIS 
channels do not correspond exactly for the two study sites except for the one middle infrared channel (2310 nm). 
 
 

Table 4. The result of stepwise multiple regression analysis to select the best AVIRIS channels  
to explain the field measured LAI for each study site. 

 
Harvard Forest Konza Prairie 

step 
channel entered (nm) R2 channel entered (nm) R2 

1 Ch 11 (471) 0.2914 Ch 56 (876) 0.0731 
2 Ch 53 (847) 0.3225 Ch 54 (856) 0.2141 
3 Ch 204 (2310) 0.3628 Ch 201 (2281) 0.2781 
4 Ch 24 (597) 0.4059 Ch 186 (2131) 0.3358 
5 Ch 49 (808) 0.4523 Ch 59 (904) 0.3603 
6 Ch 15 (510) 0.4869 Ch 208 (2350) 0.3809 
7 Ch 58 (894) 0.5138 Ch 31 (665) 0.4025 
8 Ch 185 (2121) 0.4423 
9 Ch 204 (2310) 0.4663 

10 Ch 205 (2320) 0.4867 
11 Ch 192 (2191) 0.5100 
12 Ch 196 (2231) 0.5274 
13 Ch 199 (2261) 0.5447 
14 

 

Ch 206 (2330) 0.5571 
 
 
 

 Although the magnitude of R2 for each regression model is the same as the squared value of the canonical 
correlation coefficient, the scatter plot between the canonical variable and LAI shows effectively the 
interrelationships (Figures 3 and 4).  In both study sites, there was not much differences among the three scatter 
plots (on the left side) for the canonical variable of ETM+, simulate ETM and 6 ETM center channels although the 
canonical correlation coefficients were slightly different.  As indicated by the R2 value of the regression model, the 
highest canonical correlation was found for the canonical variable of the best subset of AVIRIS channels. 
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Figure 3. Canonical correlations of ETM and selected sets of AVIRIS data aligned with the leaf area index  

for the Harvard Forest study site. 
 
 
4. CONCLUSIONS 
 
 It has been more than ten years since hyperspectral images were introduced.  There are several airborne 
imaging spectrometer systems around the world.  Further, we have already seen the spaceborne imaging 
spectrometers and are expecting more hyperspectral sensor systems in the near future.  Although hyperspectral 
image data are known to have great potential in many applications of vegetative remote sensing, there have been 
very few studies that actually show the advantages of narrowband hyperspectral data over the traditional broadband 
multispectral data.  
 
 In an attempt to compare the predictive power of AVIRIS and ETM+ data, several subsets of AVIRIS data 
were analyzed in relation to the field-measured LAI for the two study sites of mixed forest and grassland.  Among 
the four subsets of AVIRIS data, the best combination of selected AVIRIS channels was better than ETM+ or other 
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Figure 4. Canonical correlations of ETM and selected sets of AVIRIS data aligned with the leaf area index for the 
Konza Prairie study site. 

 
 
subsets of AVIRIS in predicting LAI.  There was no difference between the ETM-like subsets (simulated ETM+ and 
the six channels corresponding to the center wavelength ETM+ bands) and the actual ETM+.  Although principal 
component analysis has been frequently used in hyperspectral data analysis, the transformed principal components 
were not necessarily aligned to predict the LAI. 
 
 In many applications of hyperspectral data, it may be rare to use all the spectral channels of the original 
hyperspectral image.  As seen in this study, the 7 to 14 selected channels worked better to predict LAI than the 
principal component transformed data set.  This empirical study demonstrated that narrowband hyperspectral data 
could be better than the broadband ETM+ data in estimating LAI.  Our next question would be how we can select 
those best channels to use for certain applications.  We believe that channel selection should be based on the 
integrated approach of theories, effective data processing, and empirical validation.  
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